Surface Cyclones in the ERA-40 Dataset (1958–2001). Part I: Novel Identification Method and Global Climatology
نویسندگان
چکیده
A novel method is introduced to generate climatological frequency distributions of meteorological features from gridded datasets. The method is used here to derive a climatology of extratropical cyclones from sea level pressure (SLP) fields. A simple and classical conception of cyclones is adopted where a cyclone is identified as the finite area that surrounds a local SLP minimum and is enclosed by the outermost closed SLP contour. This cyclone identification procedure can be applied to individual time instants, and climatologies of cyclone frequency, fc, are obtained by simple time averaging. Therefore, unlike most other climatologies, the method is not based on the application of a tracking algorithm and considers the size of cyclones. In combination with a conventional cyclone center tracking algorithm that allows the determination of cyclone life times and the location of cyclogenesis and cyclolysis, additional frequency fields can be obtained for special categories of cyclones that are generated in, move through, or decay in a specified geographical area. The method is applied to the global SLP dataset for the time period 1958–2001 from the latest 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40). In the Northern Hemisphere and during winter, the cyclone frequency field has three maxima in the Pacific storm track (with fc up to 35%), the Atlantic storm track (with fc up to 32%), and the Mediterranean (with fc up to 15%). During the other seasons the fc values are generally reduced in midlatitudes and the subtropical monsoon areas appear as regions with enhanced fc. In the Southern Hemisphere, the seasonal variations are smaller with year-round maxima of fc in the belt from 50° to 70°S (along the coast of Antarctica, with maximum values of almost 40%) and to the east of the Andes (with fc up to 35% during summer). Application of a lifetime threshold value significantly reduces fc, in particular over and close to the continents. Subsets of cyclone frequency fields are calculated for several subjectively chosen regions of cyclone genesis, passage, and lysis. They show some interesting aspects of the behavior of extratropical cyclones; cyclones that decay along the U.S. West Coast, for instance, have a short lifetime and originate almost exclusively from the eastern North Pacific, whereas long-lived and long-distance Pacific cyclones terminate farther north in the Gulf of Alaska. The approach to calculate frequency distributions of atmospheric flow structures as introduced in this study can be easily applied to gridded data from global atmospheric models and assimilation systems. It combines the counts of atmospheric features with their area of influence, and hence provides a robust and easily interpretable measure of key meteorological structures when comparing and evaluating different analysis datasets and climate model integrations. Further work is required to comprehensively exploit the presented global ERA-40 cyclone climatology, in particular, aspects of its interannual variability.
منابع مشابه
A tropospheric assessment of the ERA-40, NCEP, and JRA-25 global reanalyses in the polar regions
[1] The reliability of the global reanalyses in the polar regions is investigated. The overview stems from an April 2006 Scientific Committee on Antarctic Research (SCAR) workshop on the performance of global reanalyses in high latitudes held at the British Antarctic Survey. Overall, the skill is much higher in the Arctic than the Antarctic, where the reanalyses are only reliable in the summer ...
متن کاملاقلیم شناسی سیکلون های باران زای زمستانه ایران
Cyclones as the most important factor in the turbulence of mid-latitude regions are low pressure centers that have one or more closed Isobaric curves. Mid-latitude cyclones are responsible for transfer of the heat and moisture between the tropics and the polar regions. Mediterranean cyclones have the most important role in Iran's rainfalls and get from different tracks to the country and affect...
متن کاملThe omega blocking condition and extreme rainfall in Northwestern Iran during 25 - 28 October 2008
Heavy precipitation plays a significant role in arid and semi-arid regions of Iran. In order to understand the effect of blocking high system on rainfalls in northwest Iran during 25 - 28 October 2008, meteorological conditions including pressure, wind fields and temperature at multiple levels of the atmosphere were analyzed. Sea level pressure, the 1000-500 hPa thickness, perceptible water, re...
متن کاملCan Climate Models Capture the Structure of Extratropical Cyclones?
Composites of wind speeds, equivalent potential temperature, mean sea level pressure, vertical velocity, and relative humidity have been produced for the 100 most intense extratropical cyclones in the Northern Hemisphere winter for the 40-yr ECMWF Re-Analysis (ERA-40) and the high resolution global environment model (HiGEM). Features of conceptual models of cyclone structure—the warm conveyor b...
متن کاملWill Extratropical Storms Intensify in a Warmer Climate?
Extratropical cyclones and how they may change in a warmer climate have been investigated in detail with a high-resolution version of the ECHAM5 global climate model. A spectral resolution of T213 (63 km) is used for two 32-yr periods at the end of the twentieth and twenty-first centuries and integrated for the Intergovernmental Panel on Climate Change (IPCC) A1B scenario. Extremes of pressure,...
متن کامل